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ABSTRACT 

Lattice gauge theory techniques have recently achieved sufficient accuracy to 

permit a determination of the strong coupling constant from the lP-1S splitting 

in the Charmonium system, with all systematic errors estimated quantitatively. 

The present result is a~(5 GeV) = 0.174 *O.OlZ, or equivalently, A% = ISO?$ 

MeV. 
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A central task in understanding quantum chromodynamics (QCD) is the de- 

termination of its coupling constant, g ‘. The Review of Particle Properties quotes 

values for a.(5 GeV) = ga/4n in the range 0.18-0.22.[1] Recent LEP measure- 

ments yield values in the range 0.20-0.24.[2] Most perturbative determinations of 

g’ contain nonperturbative contaminations which become 8maJ.I only at high en- 

ergies. On the other hand, high energy determinations yield g* at lower energies 

only imprecisely. Lattice gauge theory calculations provide a nonperturbative 

means of determining the strong coupling constant from low energy quantities. 

In principle, any lattice calculation of a mass or energy E allows a determina- 

tion of the strong coupling constant. The lattice calculation yields the dimension- 

less quantity aE, where a is the lattice spacing which is determined by comparing 

aE with the experimentally measured value for E. The bare lattice coupling con- 

stant g: at scale a may then be converted into one of the more familiar definitions 

of the coupling constant using known perturbative results.[3, 41 In practice, most 

existing lattice calculations contain systematic errors which are difficult to ana- 

lyze quantitatively. Consider for example the obvious case of the proton mass. 

Lattice calculations have not yet been done with quark masses as light as their 

physical values. Chiral perturbation theory calculations[5] indicate that at pion 

masses of around 400 MeV, where lattice calculations are often done, the proton 

mass is reduced by a term (of order mz) of around 100% of its physical, light 

pion value. Similarly, the most accurate lattice calculations to date have been 

done ignoring the effects of sea quarks. Some chiral quark model calculations[6] 

estimate that the proton mass may be altered as much as 30% by the effects of 

the strange quarks in the sea, let alone the light quarks. Whether or not these 

calculations are quantitatively reliable, the point is that the approximation of 

ignoring the sea quarks (the “quenched” approximation) introduces potentially 

large systematic errors for the light hadrons which are difficult to analyze and 

control. 

Heavy quark systems offer the best opportunity for determining the strong 

coupling constant with present day lattice calculations.[‘l] For these systems no 

extrapolation to light valence quark masses is necessary, and errors arising from 

the omission of sea quarks and also from the finiteness of the lattice spacing may 

be systematically analyzed and quantitatively estimated with some input from 

phenomenology, as we discuss below. 



The cleanest quantity in heavy quark systems from which to extract the strong 

coupling constant is the splitting between the spin averaged masses of the 1S and 

1P states. This splitting is insensitive to errors in spin dependent interactions 

which are induced by the finite size of the lattice spacing. It is also known to be 

quite insensitive to any errors in the definition of the quark mass, since the lP-1s 

splittings in the $ and Y systems are almost identical. Higher order finite lattice 

spacing errors such as those resulting in effective p4 interactions and four Fermi 

interactions may be easily analyzed perturbatively using potential models and 

Coulomb gauge lattice wave functions, and if necessary removed by corrections 

to the lattice action. 

We have calculated this splitting using standard Monte Carlo techniques at 

three lattice spacings (or equivalently, three values of p E S/g:). The smallest 

lattice spacing used corresponds to p = 6.1 on lattice volumes of 24’ with 25 

gauge configurations separated by 8000 pseudo-heat bath sweeps. The larger 

lattice spacings correspond to p = 5.9 on volumes of 16’ and ,B = 5.7 on volumes 

of 123 x 24, each with 25 configurations separated by 2000 pseudo-heat bath 

sweeps. 

The Wilson action for fermions was used with the O(a) correction term, 
.- 

-~c$~~F~~, added.[8] (Addition of this operator to the action suffices to cor- 

rect O(a) errors for Wilson fermions.) The coefficient c was set to 1.4 rather 

than its tree level value c = 1 on the basis of mean field theory estimates of the 

higher order corrections. For nonrelativistic fermions, it contributes mainly an 

additional d. B interaction to the quarks. The spin averaged level splitting on 

which this paper is based is expected to be very insensitive to this correction. On 

the other hand, such spin splittings as the 111 - 71. splitting which we have also 

investigated are very sensitive to it.[9] 

The lattice spacing for each value of p was obtained by calculating in lattice 

units the difference of the spin averaged mass of the 1s states (the .I/$ and the 7.) 

and the mass of the recently discovered spin singlet 1P state (the h.)[lO], and then 

comparing with the experimentally measured splitting, Mh. - (3M+ + Mnc)/4 = 

458.6 f 0.4 MeV. Coulomb gauge wave functions were used to create and destroy 

the meson states to reduce errors from excited states. 

From the lattice spacing a and the bare lattice coupling constant go”, the 

MS coupling at scale */a may be obtained using the one loop perturbative 

2 



0 10 20 

r 
Figure 1: The wave function of the 11 meson. 

formula g&(z) = gi’(l - ig’) + 0.025.[3,4] The background field calculation of 

this correction[4] shows that it is dominated by the term in parentheses, which 

is the perturbative expectation value of the plaquette < TrUp >. We have 

therefore substituted the known nonperturbative value of the plaquette at each 

p to correct for higher order effects in the relation between the bare and MS 

coupling constants[ll], using 

1 
= 1 < TdJp >M~ +0.025. 

!J$&) 901 

(The values for < TrUp >MC are 0.549, 0.582, and 0.605 at p = 5.7, 5.9, and 6.1, 

respectively.) This yields an additional correction to the MS coupling constant 

(11% of the final value) which is much smaller than the one loop correction (about 

44%) but not negligible. 

Figure 1 shows the Coulomb gauge wave function of the $J meson calculated on 

the 24’, fl = 6.1 lattices. It is probably not controversial that finite volume errors 

are negligible for the lattice sizes used. To check this, a low statistics calculation 

was done at p = 6.1 on a volume of 16’ which yielded a value of the lP-1s 
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Figure 2: A” as a function of a*. MS 

splitting lo-2090 larger than that on the 24’ lattices. Figure 1 shows that the 

wave function of the $ is about a factor of five smaller at a distance of 12 lattice 

spacings (half way across the 24’ lattice) than it is at 8 lattice spacings (half 

way across the 16’ lattice). Assuming that finite volume errors fall roughly as 

the square of the wave function halfway across the lattice leads to the conclusion 

that the errors on the 24’ lattice are under a percent in the spin splitting and 

therefore in A- This implies errors in a of a fraction of a percent. 

We have already noted that the spin averaged lP-1s splitting is very insen- 

sitive to the O(a) errors of the Wilson quark action. Further, we have used a 

corrected action which minimizes these errors. It is therefore to be expected that 

the most important finite lattice spacing errors remaining will be of order e2. To 

test for the size of these, the calculation was performed at three lattice spacings. 

From the lP-1s splitting, we obtained u-i = 1.15(8) GeV, 1.78(9) GeV, and 

2.43(15) GeV at p = 5.7, 5.9, and 6.1 respectively. The errors in parentheses 
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are statistical only. Using Equation (1) and the parameterization for CI, of the 

Particle Data Group, values for A$$ were obtained for each lattice spacing. I= 
Figure 2 the results are plotted as a function of or. The value of A!& = 234 

MeV after extrapolation to as = 0 is about 4% larger than its value at p = 6.1. 

The statistical errors are not small enough to distinguish between possible func- 

tional forms for the finite a errors (e. g., a, us, or a’), and we rely on theoretical 

prejudice in making the extrapolation in a s. We therefore take the 4% difference 

between the extrapolated value and the value at p = 6.1 as a contribution to 

the systematic uncertainty. The next step in removing this small contribution to 

the uncertainty will be the evaluation of the known discretization errors present 

in the lattice action with the Coulomb gauge wave functions obtained from the 

lattice calculations, to verify or improve the functional form of the extrapolation 

in Figure 2. 

The fmal and largest source of uncertainty arises from the conversion from the 

zero light quark running coupling constant of the lattice calculation to the four 

quark running coupling of the real world. It is more convenient to discuss this 

uncertainty in terms of gs rather than A. The adjustment of the bare parameters 

of the lattice action to reproduce experimental physics is really the adjustment 

of the parameters in the effective action at the physics momentum scale to be 

correct. Since the p function of the quenched (zero light quark) lattice theory 

is slightly too large, the short distance coupling constant of the quenched lattice 

theory must be slightly too small. It is this discrepancy which must finally be 

estimated. In perturbation theory, requiring that the effective actions of the 

lattice and the real world match at the physics scale pi requires approximately 

that the running coupling constants match at this scale. The required difference 

in the running couplings at scale ,us is then given by 

Ag-O = 
I 

WY din $(,$‘) - &’ + (#“f) - /$))gz + . ) 1 . 7 
PL (2) 

where &‘l = (11 - 2/3 n,)/(167rs), and BP” = (102 - 38/3 n~)/(167r”)s. From 

potential models we know that the typical momentum transfer in J/+ mesons 

is around ~1 e 400 MeV. Most of the required correction arises from the large 

/I region where perturbation theory is valid, and is therefore reliably given by 

Equation (2). Integrating the correction from ~1 = 5 GeV down to 750 MeV, 

the scale of typical quark momentum in the J/4, and making the appropriate 
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change from the four quark to the three quark p function at the charmed quark 

mass, gives a contribution to the correction of Ag-’ = -0.080. (gv, the coupling 

constant defined from the heavy quark potential, was used in the integration.) 

This is certainly an underestimate of the correction, since the p function is quite 

convergent in this region and 750 MeV is the largest momentum scale in the 

systems we are studying, If we take pL1 x 400 MeV as the best guess for the 

appropriate matching scale, we obtain an additional correction of Ag-’ = -0.060. 

This large contribution from a small region of integration arises from the fact 

that 400 MeV is near the fictitious pole in the two-loop perturbative coupling 

constant, causing g$ to begin to blow up near the end of the integration region. 

(At ~1 = 400 MeV, we obtained gv - z - 45.) Although the true contribution 

of the low energy region to the coupling constant corr&tion cannot be reliably 

estimated perturbatively, it is certainly not divergent, so this is almost certainly 

an overestimate of the true correction. Since the effects of light quarks on the 

potential are relatively mild both at short distances (known from the perturbative 

p functions) and at large distances (known from comparing the string tensions 

obtained from Regge phenomenology and from quenched lattice calculations), it 

is implausible that their effects in the intermediate region are overwhelmingly 

severe. We therefore take these two estimates as upper and lower bounds on 

the true correction, giving Ag-’ = -0.110 f 0.030. The approximate size of 

this correction, 2490, clearly makes sense, since if the comparison scale 5 GeV 

is replaced by an asymptotically large value ~2, the obtained correction must 

approach (pp’-&‘)/&@ = (2/3)(n,/ll) n. 24% for n, = 4. Over the next few 

years, this largest source of uncertainty will be eliminated by the inclusion of sea 

quarks in lattice calculations. In the short term, it may be clarified and, we hope, 

reduced, with the use of potential models and a study of the static potentials of 

the quenched and unquenched lattice theories. 

Our final result is 

am(5 Gel') = 0.174 f 0.012. (3) 

This corresponds to A.” = 160- MS ‘:; MeV, using the parameterization of the Par- 

title Data Group. The known corrections and uncertainties are summarized in 

Table 1. Each correction 6; is defined to mean that the corrected coupling ai is 

given by pi = (1 + ~i)cz-~. The uncertainty is dominated by the uncertainty in 
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Source Correction Uncertainty 

go + & (One loop, Ref. [3, 41) 44% 

gi + g& (Monte Carlo correction, Ref. [ll]) 11% 
g(o) + g(4) 24% 6.6% 

Statistics 2% 

Finite lattice spacing 1% 1% 

Finite volume 

Table 1: Summary of corrections and uncertainties in the determination of c&. 

Note that all of the corrections have the same sign, raising the obtained value of 

a. 

relating the zero quark coupling constant of the lattice calculation to the four 

quark coupling constant of the real world. 

Over the next few years, using Monte Carlo simulations including the effects 

of sea quarks, it will be possible to eliminate the errors dominant in the present 

calculation arising from the correction in Equation 2. The stated uncertainty does 

not include the 5 - 10% uncertainty intrinsic to any second order perturbative 

QCD calculation. This arises in this calculation solely from the introduction of 

Equation 1 to convert to the MS definition of the coupling constant for the pur- 

poses of comparison with existing results. It can be eliminated by the adoption of 

a physical definition of the strong coupling constant such as gv, the coupling de- 

fined from the static potential, for the purposes of comparison. Such a coupling 

constant may be determined nonperturbatively directly from the static poten- 

tial on the lattice (and of course computed to as many loops as desired for the 

purposes of short distance analyses). 

Recently, a similar calculation has been performed for both the $ and T 

systems using the nonrelativistic formulation of lattice fermions[l2]. For the T 

system, the systematic errors and corrections are quite different from the ones 

reported here. The results are compatible. 

Extrapolating to the mass of the 2, we obtain I = 0.105 f 0.004. 

This is a little more than 2 0 below the combined results from LEP: cr(Mz) = 

0.119 f 0.006[2]. 
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